
Renormalization-theoretic analysis of non-equilibrium phase transitions: I. The Becker-Döring

equations  with  power law rate coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 8679

(http://iopscience.iop.org/0305-4470/34/41/320)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/41
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 8679–8695 PII: S0305-4470(01)18257-0

Renormalization-theoretic analysis of non-equilibrium
phase transitions: I. The Becker–Döring equations
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Abstract
We study in detail the application of renormalization theory to models of
cluster aggregation and fragmentation of relevance to nucleation and growth
processes. We investigate the Becker–Döring equations, originally formulated
to describe and analyse non-equilibrium phase transitions, and more recently
generalized to describe a wide range of physicochemical problems. In this
paper we analyse how the systematic coarse-graining renormalization of the
Becker–Döring system of equations affects the aggregation and fragmentation
rate coefficients. We consider the case of power law size-dependent cluster rate
coefficients which we show lead to only three classes of system that require
analysis: coagulation-dominated systems, fragmentation-dominated systems
and those where coagulation and fragmentation are exactly balanced. We
analyse the late-time asymptotics associated with each class.

PACS numbers: 64.60.-I, 64.60.Ht, 82.20.-w

1. Introduction

The purpose of this paper is to develop renormalization methods for nucleation and growth
processes. Renormalization theory has been applied to various problems in theoretical physics,
being widely used in high-energy physics [23] and in the analysis of equilibrium phase
transitions in statistical physics [7]. It has also been used in a limited way in asymptotic
analysis by Goldenfeld [21]. However, it has not previously been used in the asymptotic
analysis of non-equilibrium phase transitions of the kind discussed in this paper, mainly due
to the complex nature of these models which often involve nonlinear and non-local features.
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In statistical mechanics, the basic idea underlying the concept of renormalization is the
systematic filtering out of unwanted degrees of freedom in the transition from the microscopic
to the macroscopic description of phenomena. In the case of equilibrium phase transitions,
near a critical point the system looks the same on all length scales and this physical insight
is translated into mathematical language in terms of ‘the renormalization group’ (RG), a set
of scale-invariant transformations which leave the essential physical properties of the system
unchanged. Admittedly, the RG terminology is somewhat inappropriate since the symmetry
of such transformations is that of a semi-group (information is lost on coarse-graining), and
the methodology comprises many different ideas and distinct methods, rather than being a
formal monolithic edifice. Wilson’s work on the RG spawned a vast effort in the analysis of
equilibrium critical phenomena and quantum field theory [1,38]. Of much more recent interest
has been the application of the renormalization methodology to non-equilibrium phenomena.
The complexity of far-from-equilibrium dynamics is such that, while the physical motivation
behind the RG programme of coarse-graining microscopic models still seems appropriate to
obtain the macroscopic properties, it must be shown in each specific case that there may be a
suitable scale invariance (‘RG’) underlying the physics, which can reveal or explain universality
in behaviour.

Of central interest in this paper is the asymptotic late-time macroscopic behaviour of
complex dynamical systems. Previously, Bricmont and Kupiainen [3–5] have combined
asymptotic methods with ideas from renormalization theory to study problems in diffusive
processes and special limiting solutions of nonlinear parabolic equations while Woodruff [39–
42] has cast multiple-timescale problems in the form of renormalization theory. This allowed
the equations governing larger-scale phenomena to be derived from a more general theory
and to be separated out from the small-scale dynamics. In his approach, Woodruff separates
timescales in the asymptotic limit ε → 0 by writing the time t as t = t/ε + t̃ where t̃ is the
fast timescale and t is the slow timescale. The methods we develop in this paper share some
of these features.

We apply underlying concepts from renormalization theory to study a simple model of
nucleation, namely the Becker–Döring equations. These were originally formulated to study
first-order phase transitions, and have been a central pillar in classical nucleation theory. They
describe the stepwise growth and fragmentation of clusters in terms of the rates of the indi-
vidual processes wherein monomer particles join or leave each cluster. Despite the age of this
model, we have only very recently applied generalizations of the Becker–Döring equations to a
wide range of physicochemical processes from those involving surfactant self-assembly [14,15]
through RNA polymer formation [12,13,32] to cement setting [13,31]. In these studies coarse-
graining procedures are derived and used to reduce large systems of equations down to progres-
sively lower-dimensional—‘mesoscopic’—dynamical systems capable of theoretical analysis
using standard techniques from the modern theory of differential equations. The coarse-grained
contraction procedure, which is summarized in section 2, is analogous to other renormalization
methods used in statistical physics, and this feature is exploited within this paper.

The Becker–Döring equations have recently been subjected to more conventional
analysis using matched asymptotic expansions [36, 37]. Rather than use the coarse-
graining approximation, which emphasizes the discrete nature of the equations, that analysis
concentrated on the large-time limit where continuum approximations become valid [36]. The
key results from this analysis are summarized here in section 3. The large-time limit of the
coarse-grained equations was also studied there, and revealed the necessity of combining a
change of timescale with the coarse-graining process in order to preserve the accuracy of the
dynamics of the system; in the present analysis, this translates into the need to use a dynamical
renormalization scheme.



Renormalization-theoretic analysis of non-equilibrium phase transitions: I 8681

Asymptotic methods have been applied directly to coagulation–fragmentation problems
before: for example van Dongen and Ernst [18, 19] and Davies et al [17] have elucidated the
self-similarity of the pure aggregation form of Smoluchowski’s equations. These equations
differ from the Becker–Döring equations in allowing clusters arbitrary size to coalesce together
whereas the Becker–Döring equations only allow cluster–monomer interactions, but allow
both aggregation and fragmentation. The Smoluchowski coagulation–fragmentation problem
is much more complex but has been analysed by van Dongen and Ernst [20] and Carr and
da Costa [8–10]. The scaling behaviour of the Becker–Döring equations has been studied by
several authors: for example, Brilliantov and Krapivsky [6] and Blackman and Marshall [2].
Coarse-grained versions of the Becker–Döring equations have been analysed using matched
asymptotic methods [30,33]. In addition many authors have considered hybrid systems which
have combined features of the Smoluchowski equations and the Becker–Döring equations:
this approach started with Samsel and Perelson [28] who studied a system in which two
clusters of arbitrary size can coalesce, but with a fragmentation step which is strictly Becker–
Döring in nature, allowing only monomers to dissociate from clusters. Such models have
been investigated further by Krapivsky and Redner [25] and Hendricks and Ernst [22].
Krapivsky [24] considered an alternative modification of the Becker–Döring equations, again
concentrating analysis on the large-time scaling laws, while Peliti [26] looked at the scaling
behaviour of a very simple model of pure aggregation in various dimensions in order to discover
the manner in which the scaling laws depend on spatial dimension.

Our methods fit within the spirit of Woodruff’s approach if we write the microscopic
aggregation number r of a cluster as r = (λ − 1)n + 1 + k where n is of mesoscopic size
and k is a microscopic correction; we then aim to determine the problem on the mesoscale
in a form which does not require us to simultaneously solve the microscopic problem. Thus
microscopic detail is filtered out, but we are able to construct a simpler model which remains
valid on larger (mesoscopic and macroscopic) scales. Velazquez [29] has recently used a
renormalization technique in an attempt to draw together the theories of Lifshitz–Slyozov
coarsening and nucleation as modelled by the Becker–Döring equations. His RG differs from
ours in several ways, most egregiously in that it separates the monomer concentration from
the large-cluster sizes, whereas we retain the monomer concentration as an integral part of the
mesoscale model.

Preliminary results of our work were reported in an earlier publication [16]. Here we
provide the details omitted from that communication. We also discuss how the coarse-graining
procedure affects the large-time kinetic behaviour of the systems under consideration. Various
types of system are introduced and analysed, including full and coarse-grained systems of
Becker–Döring equations (sections 2 and 3). The underlying renormalization structure is
described (section 4), and the large-time asymptotics associated with the fixed points of the
renormalization mapping are analysed (section 5). We consider noise-free Becker–Döring
systems, by which we mean those with simple analytical formulae for their rate coefficients;
in a separate paper [34] we present our analysis of ‘noisy’ systems in which the rate constants
are perturbed by a random amount from the analytical expressions used here. We conclude
with a discussion of our results (section 6).

2. The Becker–Döring cluster equations

In this section, we give a basic outline of the Becker–Döring system of equations and their
properties. We consider the case for which the monomer concentration (c1) is held constant;
thus the Becker–Döring equations we are concerned with here are
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ċr = Jr−1 − Jr (r � 2) Jr = arcrc1 − br+1cr+1 (2.1)

and we leave the constant mass formulation (in which the monomer concentration may vary)
for future study. In this system of equations, cr(t) represents the concentration of clusters
containing r monomers. Clusters of any particular size can be formed by two processes: either
by the next smallest cluster size coalescing with a monomer, or by the next largest size losing a
monomer. Only such monomer–cluster interactions are permitted in the Becker–Döring model
of nucleation; cluster–cluster interactions are ignored. The assumption of a constant monomer
concentration is made in situations where the so-called ‘pool chemical approximation’ is valid,
namely where there is a large source of monomer species entering into the system at a rate
which maintains the monomer concentration essentially fixed and independent of time.

There are certain special properties of the Becker–Döring system which are not
immediately apparent from the equations (2.1), and which must be preserved under the
coarse-graining rescaling if the method is to produce physically relevant results, through
approximating the original system in a faithful manner. These are:

(i) There exists a partition function, Qr , satisfying arQr = br+1Qr+1, and hence an
equilibrium solution cr = Qrc

r
1. The quantity Qr is related to the chemical potential

of a cluster of size r . If we denote Boltzmann’s constant by k, the temperature of the
system by T and use the reference state µ�

r in which µ�
1 = 0, then the chemical potential

of a cluster of size r (denoted µr ) is given by µr = µ�
r + kT log cr . At equilibrium, this

must satisfy µr = rµ1, thus µ�
r = −kT logQr and Q1 = 1.

(ii) There exists a Lyapunov function, V = ∑∞
r=1 cr(log(cr/Qrc

r
1) − 1), which is related to

the Helmholtz free energy of the system by F = kT VV , where V is the volume of the
system.

(iii) There exists a set of identities (or ‘weak form’),
∑∞

r=2 gr ċr = g1J1 +
∑∞

r=1 [ gr+1 −gr ] Jr .
(iv) The total density of the system is � = ∑∞

r=1 rcr . However, this is not conserved since
matter can be added to or removed from the system by the monomer concentration being
held constant.

For certain choices of rate coefficients ar, br and certain monomer concentrations c1, the
equilibrium solution will not decay to zero in the limit r → ∞. In these cases, an alternative
steady-state solution will be approached in the large-time limit. This solution is given by a
constant nonzero flux through the system, that is Jr = J independent of r . This condition
yields the family of solutions

cr = Qrc
r
1

(
1 − J

r−1∑
k=1

1

akQkc
k+1
1

)
(2.2)

which contains the equilibrium solution as the special case J = 0. The steady-state flux J is
determined by requiring the concentrations cr to decay to zero in the large-r limit, giving

J = 1

/ ∞∑
r=1

1

arQrc
r+1
1

. (2.3)

2.1. Other formulations

An alternative formulation of the Becker–Döring equations has been proposed by Penrose and
Lebowitz [27], in which the monomer concentration is allowed to vary, whilst the total mass
of material in the system (�) is held constant. The analysis of such a system is in general more
complicated since the monomer concentration is unknown and causes the system to become
both nonlinear and non-local (in r).
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An underlying model in this paper is a constant-mass system in which monomer is added
to or removed from the system by way of a precursor chemical P which undergoes a reversible
reaction to create monomerC1. This is modelled by the simple reaction P � C1 with forward
rate kf (p, c1) and reverse rate kb(p, c1). Denoting the concentration of P by p(t) we then
have the system

ṗ = kb(p, c1)c1 − kf (p, c1)p (2.4)

ċ1 = kf (p, c1)p − kb(p, c1)c1 − J1 −
∞∑
r=1

Jr (2.5)

in addition to (2.1). This system has a conserved quantity �tot = p +
∑∞

r=1 rcr . However,
note that the amount of mass in the Becker–Döring part of the system ({cr}∞r=1) is not constant
�BD(t) = ∑∞

r=1 rcr . Such an extended system of the Becker–Döring equations has been
used previously to model generalized nucleation phenomena [31]. In certain cases analytical
progress in the study of such systems can be made using asymptotic techniques, such as
in [36] where the constant mass formulation of the Becker–Döring equations are investigated,
and in [31] where a generalized constant mass system with inhibition as well as a precursor
chemical is analysed.

In studying just the Becker–Döring part of this extended system (2.1), we are assuming
that the precursor chemical decays in such a way that the monomer concentration remains
constant, that is ċ1 = 0. This requires

ṗ = −J1 −
∞∑
r=1

Jr . (2.6)

Solutions which we describe as equilibrium solutions satisfy Jr = 0 for all r � 1, thus
correspond to p = kbc1/kf , and for this specific concentration of precursor chemical the
additional reaction which adds or removes matter from the Becker–Döring part of the system
will also be in equilibrium. Thus, the equilibrium solution of our extended system is given by
cr = Qrc

r
1 with c1 = kf p/kb, and at equilibrium Jr = 0 for all r � 1. However, for solutions

we describe as steady states, the fluxes Jr = J 	= 0 where J is independent of size (r), so
there is a net flux of matter into the system (assuming J > 0, consequently a removal of mass
if J < 0), and in these cases we assume that there is sufficient precursor chemical to sustain
the steady state. In this case, although ċr = 0 for all r , ṗ 	= 0 so the precursor chemical is not
in equilibrium. Such steady-state solutions can be characterized by the flux associated with
them.

3. Coarse-graining procedure

Following a general coarse-grained contraction with constant ‘mesh’ size λ in aggregation
number (so that we only retain the aggregation numbers r = �n = (n − 1)λ + 1), the kinetic
equations reduce to

ẋn = Ln−1 − Ln (r � 2) Ln = αnxnx
λ
1 − βn+1xn+1 (3.1)

αn = T a�n
a�n+1 . . . a�n+1−1 βn+1 = T b�n+1b�n+2 . . . b�n+1 (3.2)

where the retained coarse-grained cluster concentrations are relabelled as xn := c�r
with

x1 := c1 the monomer concentration, which is not involved in the coarse-graining since it has
a special role in the Becker–Döring theory [14, 16]. The parameters αn, βn are the coarse-
grained aggregation and fragmentation rates, now representing the addition or removal of λ
monomers to or from a cluster (rather than just a single monomer which occurs in the full
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Becker–Döring system). This flux of matter is denoted by Ln. In effect, the system models
the aggregation–fragmentation processes

(λ + 1)X1 � X2 Xn + λX1 � Xn+1 (n � 2) (3.3)

for coarse-grained clusters of size Xr . The concentration xn(t) is representative of the
concentrations cr for cluster sizes (�n−1 + 1) � r � �n. The factor T represents a change
of timescale. This factor was omitted in our original formulation of the coarse-graining
procedure [14,32]; its inclusion ensures that the large-time asymptotic behaviour of the reduced
system coincides exactly with the original fine-grained system in the case of size-independent
aggregation and fragmentation rates (ar = a, br = b). The large-time asymptotics of the
constant-monomer-concentration Becker–Döring system with constant coefficients were found
by Wattis and King [36] using conventional asymptotic expansion methods. The leading-order
solution found there falls into two cases: for ac1 < b the equilibrium solution cr = (a/b)r−1cr1
is approached; whilst for ac1 > b the steady-state solution cr = c1 is approached. In both cases
the asymptotic solution is realized by a front moving forward into larger r-space (‘aggregation
space’) at speed ṡ = |ac1 − b|, ahead of which (r > s(t)) the concentrations are all zero, and
behind which (r < s(t)) the concentrations are either at a steady state or in thermodynamic
equilibrium. In order for the coarse-grained contraction to preserve the correct speed of
propagation, the timescale T should take the value

T = (ac1 − b)

λ(aλcλ1 − bλ)
. (3.4)

This temporal rescaling also ensures that the steady-state fluxes in the full and reduced
systems coincide. In the terminology of renormalization theory, this makes the coarse-graining
procedure a dynamical renormalization transformation.

The four properties listed in section 2 above for the full Becker–Döring system of equations
are shared by the contracted system of equations (3.1):

xn = Q�n
x
�n

1 V =
∞∑
n=1

xn

(
log

(
xn

Q�n
x
�n

1

)
− 1

)
∞∑
n=2

gnẋn = g1L1 +
∞∑
n=1

(gn+1 − gn)Ln � =
∞∑
n=1

[ (n− 1)λ + 1 ] xn

(3.5)

where αnQ�n
= βn+1Q�n+1 .

Note that it is also possible to allow the mesh size to vary with aggregation number [31]:
that is, putting λ = λn transforms the system with constant rates (ar = a, br = b) into one
with non-constant rates (since αr = aλr will be a nontrivial function of r , and similarly for
βr+1). For this reason we put to one side such generalized meshes in this paper.

4. Renormalization structure

We now proceed to consider the renormalization of Becker–Döring models in which the
cluster rate coefficients are of power law form. As discussed below, this dependence is of
immediate relevance to the description of surface-limited nucleation and growth processes in
physicochemical systems.

4.1. The Becker–Döring system with power law coefficients

In the case of Becker–Döring systems with power law rate coefficients, the rate coefficients
for aggregation and fragmentation are respectively

ar = arp br+1 = brp (4.1)
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so that the parameter θ = ac1/b which arises in the constant-monomer case remains useful
for classifying dynamical behaviour. The parameter p determines the variability of rate
with cluster size, with p > 0 implying that large cluster sizes have larger aggregation and
fragmentation rates, and p < 0 giving rates which decrease with increasing cluster size.
The latter case is of rather less physical relevance, but we still study it here for the sake of
completeness. Typical values for p are p = 0, 1

2 ,
1
3 ,

2
3 , 1 for the examples of linear chain

polymerization, coagulation kinetics in two space dimensions, diffusion-limited coagulation
in three dimensions, surface-limited coagulation in three dimensions, and branched chain
polymerization, respectively. Since a cluster’s volume scales with aggregation number r , if
we assume that clusters are spherical then their surface area scales with r2/3 and their diameter
with r1/3, accounting for the presence of these exponents. More general exponents can be
manifest in other physical situations [11].

The partition function Qr is defined by Qr = (a/b)r−1 as in the p = 0 case considered
earlier [36]. The governing equations are then

ċr = Jr−1 − Jr (r � 2) Jr = rp(ac1cr − bcr+1) (r � 1). (4.2)

For θ � 1 the system approaches the steady-state solution (which we also refer to as the
equilibrium solution, even though, strictly speaking it may not be, owing to the boundary
condition of constant monomer concentration imposed by the pool chemical approximation)
given by solving Jr = 0, that is

cr = θr−1c1. (4.3)

Note that this solution is independent of p, although the way in which the steady-state solution
is approached depends on p.

For θ > 1 this solution gives diverging concentrations for large r and is hence
unphysical. In this case the system approaches one of a family of time-dependent solutions to
equations (4.2), in which all fluxes are equal; Jr = J for all r then implies

cr = θr−1c1

(
1 − J

r−1∑
k=1

1

bc1kpθk

)
. (4.4)

For θ > 1 the sum is convergent in the limit r → ∞, and so the flux which gives the least
singular behaviour in this limit is

J = bc1

/ ∞∑
k=1

k−pθ−k. (4.5)

The steady-state solution valid for all r is

cr = J

b

∞∑
k=r

k−pθr−k−1. (4.6)

4.2. Repeated application of contraction procedure: renormalization

We have already shown how the full Becker–Döring system of equations can be reduced by
a coarse-graining process to the subsystem of equations (3.1), (3.2). We now show that these
equations can be further reduced, by applying the contraction procedure to (3.1), (3.2) with
mesh size µ, defining the monomer concentration in the new variables by z1 = x1(= c1). The
new cluster concentrations zp are representative of the concentrations xn for (Mp−1 +1) � p �
Mp where {Mp}∞p=1 is the grid of retained n values of cluster aggregation numbers, determined
by Mp = (p − 1)µ + 1. Thus we find

żp = Ip−1 − Ip (p � 2) Ip = Apzpz
λµ

1 − Bp+1zp+1 (4.7)
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where Ip is the flux of material from concentration zp to zp+1, and has aggregation and
fragmentation rates determined by

Ap = T̃ αMp
αMp+1 . . . αMp+1−1 Bp+1 = T̃ βMp+1βMp+2 . . . βMp+1 . (4.8)

We have denoted the change of timescale by T̃ . In the case of the model with constant
coefficients (αn = α, βn = β for all n), in order for the timescales of the approach to steady
state or equilibrium to be correctly reproduced, the temporal rescaling factor T̃ should be
chosen to be

T̃ = (αxλ1 − β)

µ(αµx
λµ

1 − βµ)
= (ac1 − b)

λµT µ(aλµc
λµ

1 − bλµ)
(4.9)

by analogy with (3.4). The rate coefficients satisfy ApQ(p−1)λµ+1 = Bp+1Qpλµ+1. The system
satisfies the four properties

zp = Q(p−1)λµ+1z
(p−1)λµ+1
1 V =

∞∑
p=1

zp

(
log

(
zp

Q(p−1)λµ+1

)
− 1

)
∞∑
p=1

gpżp = g1I1 +
∞∑
r=1

(gp+1 − gp)Ip � =
∞∑
p=1

[(p − 1)λµ + 1 ] zp.

(4.10)

So we see that the repeated contraction is identical to a single contraction with mesh parameter
γ = λµ. The system of equations (4.7) could have been derived by a single coarse-grained
contraction, with mesh

zp = c
+r

z1 = c1 +p = (p − 1)γ + 1. (4.11)

Note also that +p = �Mp
= M�p

, so that the coarse-graining procedure is commutative.
The combined effect on the rate coefficients and timescale can be verified by noting that

in the case of constant coefficients, A = T̃ αµ = T̃ T µaλµ = T̂ aλµ, where

T̂ = ac1 − b

λµ(aλµc
λµ

1 − bλµ)
(4.12)

which is what one would expect if λ were replaced by λµ in equation (3.4).
At the heart of renormalization theory is the repeated application of a coarse-graining

procedure. The analysis above shows that: (i) a contracted version of the Becker–Döring
system can itself be contracted, which is crucial if we are to use ideas from renormalization
theory; and (ii) the effect of coarse-graining the Becker–Döring equations with a mesh size
λ and then coarse-graining the resultant equations with a mesh size µ is identical to a single
application of the coarse-graining process with mesh γ = λµ. Thus the limit of repeated
applications of the renormalization coarse-graining process corresponds to the λ � 1 limit
of equations (3.1). This second property makes the ensuing analysis possible, since we do
not have to handle systems of equations more complicated than the Becker–Döring system
itself; that is, the structure of the equations is invariant under this transformation. Note that as
one may have expected a priori, the coarse-graining does not introduce cluster–dimer or more
general cluster–cluster interactions; rather the theory is generalized so that clusters interact
with several monomers in moving from one coarse-grained set of cluster sizes to the next.

4.3. Contraction of power law coefficients

If the rate coefficients in the original formulation in equations (2.1) are determined by simple
power laws, namely ar = arp and br+1 = brp, then the coefficients in the reduced model are

αn = aλ {[(r − 1)λ + 1][(n− 1)λ + 2] · · · [nλ]}p . (4.13)
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Figure 1. The effect of the coarse-graining contraction or, equivalently, the renormalization
mapping, on the parameters θ, p in the Becker–Döring model with power law rate coefficients.
The nine fixed points of the map are denoted I–IX, and represent possible universality classes for
the dynamics.

Thus

logαn = λ log a + p

λ∑
j=1

log(nλ− λ + j)

≈ λ log a + p

∫ λ

0
log(nλ− λ + x) dx

= λ log a + pλ

[
log(nλ)− 1 + (1 − n) log

(
1 − 1

n

)]
. (4.14)

For large n this asymptotes to logαn ∼ λ log a + pλ log(λn), so for simplicity we shall take
αn = (aλpnp)λ, which differs slightly at small values of n. The backward rate coefficient
is then βn+1 = (bλpnp)λ. Since contracting a constant density Becker–Döring system leaves
the kinetic part of the equations invariant and only affects the coefficients in the ‘constitutive
equation’ for the flux, the steady-state solutions and large-time asymptotics for the contracted
systems of equations can be found directly from the above theory.

The new system has its own θ parameter determining the balance between aggregation and
fragmentation rates in the system which, for the moment, we shall call θ̃ = αrx

λ
1 /βr+1 = θλ,

so contraction of the system maps θ to θλ. The parameter θ thus plays an important role in
the renormalization procedure, the fixed points of this mapping corresponding to θ = 0, 1,∞;
hence such systems are of special interest to us. Also the contraction maps coefficients with
exponent p to those with exponent pλ. Thus, following a contraction, there are only three
limits to consider: small p (namely p = 0) and large p (positive and negative).

The effect of coarse-graining a Becker–Döring system is to modify the rate coefficients,
by the map θ �→ θλ and p �→ λp. If λ is allowed to take on large values, there are
only nine combinations of (θ, p) which merit attention, namely all possible combinations
of θ = {0, 1,∞} and p = 0, p > 0, p < 0. These nine cases and their associated fixed
points will also be the basis of analysis in subsequent sections of this paper. However, the
cases corresponding to p < 0 are physically less relevant, since equation (4.1) then assigns
the largest rates to the smallest cluster sizes. Figure 1 shows schematically the effect of the
contraction on the parameters θ, p.

In phase plane terminology, II has the form of an unstable node, while I, III, V, VIII are
saddle points, since they act as attractors in one direction and repellors in the other (although
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they are at the limits of the allowable domain, so only have trajectories on one side of the
critical point). Cases IV, VI, VII, IX are stable nodes since they act as attractors in both the θ
and the p directions.

5. Large-time asymptotics of the nine universality classes

The previous section identified nine special, or limiting, cases which merit more detailed
analysis, since following a coarse-grained contraction with large mesh parameter, any model
will be approximated by one of these cases. To simplify the analysis we shall always choose
a scaling such that x1 = 1, with α and β equal to zero or unity. In this section we present
large-time and large-aggregation-number asymptotics. These are developed by means of a
continuum limit, which replaces the system of ordinary differential equations by a single
partial differential equation, and draws on the results derived by Wattis and King [37]. We
apply these results in particular to our nine limiting cases. In a further paper these results
will be generalized to systems whose rates are perturbed away from the simple polynomial
expressions considered here [34].

5.1. Case I: pure fragmentation at a constant rate

This corresponds to constant fragmentation with rate βn = 1 and no aggregation. Hence
we expect the system to approach the equilibrium configuration xn = 0 for all n � 2. The
governing equation is

ẋn = xn+1 − xn for n � 2. (5.1)

If the system is started from the initial conditions xn(0) = 0 for n � 2, then the system does
not change. All other initial conditions will approach this state as t → ∞.

5.2. Case II: aggregation and fragmentation at constant rates

This case corresponds to constant rate coefficients but with both coagulation and fragmentation
present, and exactly balancing each other,αn = 1 = βn. Thus we expect the system to approach
the equilibrium solution xr(t) = x1. The time evolution follows the equation

ẋn = xn−1 − 2xn + xn+1 for n � 2 (5.2)

which has the form of a ‘discrete diffusion’ equation.
In the limit of large time and large n, the discrete system (5.2) can be approximated by

the diffusion equation

∂x

∂t
= ∂2x

∂n2
(5.3)

whose solution is xn = erfc(n/2
√
t). This equilibrium is approached by a purely diffusive

mechanism, there being no advective term in (5.3), in contrast to cases I and III (below) where
advection is present.

5.3. Case III: pure aggregation at a constant rate

This case corresponds to constant aggregation with rate coefficients αn = 1 for all n, and no
fragmentation (βn = 0 for all n). Thus we expect the steady-state solution xn = x1 to be
approached, which has steady-state flux L = αxnx

λ
1 = 1. The governing equations

ẋn = xn−1 − xn for n � 2 (5.4)
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are exactly solved by

xn = 1 − e−t
n−2∑
k=0

tk

k!
. (5.5)

However, it is not straightforward to see which mechanisms are driving the growth process
when the solution is written in this form. An asymptotic approximation gives a much more
intuitive idea of the dynamical behaviour. To describe the large-time and large-aggregation-
number asymptotics of this case, we approximate (5.4) by

∂x

∂t
= 1

2

∂2x

∂n2
− ∂x

∂n
(5.6)

from which we can deduce the existence of a front of matter which propagates to larger
aggregation numbers with speed unity, the front itself spreading out over a range of aggregation
numbers proportional to t1/2. This can be shown by transforming to the new independent
variable z = n − t yielding ∂x

∂t
= 1

2
∂2x
∂z2 , which has the similarity solution x = 1

2 erfc(z/
√
t).

Thus in the limit t → ∞
xn = 1

2
erfc

(
n− t√

2t

)
(5.7)

which is an asymptotic approximation of (5.5).

5.4. Case IV: pure fragmentation with rates increasing with cluster size

In this case the only process occurring is fragmentation, and the fragmentation rate depends
on cluster size, with larger clusters losing monomers at faster rates. So, as in case I the system
will tend to xn = 0 for all n � 2. The system is governed by

ẋn = npλxn+1 − (n− 1)pλxn n � 2. (5.8)

Since the aggregation rates are greater than in case I, the equilibrium solution will be approached
more rapidly than in case I. Matter is advected to smaller aggregation sizes, and removed from
the system in monomeric form.

5.5. Case V: aggregation and fragmentation with rates increasing with cluster size

In this case we have both coagulation and fragmentation and both rates increase algebraically
with aggregation number. The system is governed by the equations

ẋn = (n− 1)pλxn−1 − (n− 1)pλxn − npλxn + npλxn+1. (5.9)

The equilibrium solution is xn = 1 for all n, and by analogy with case II (which also has
θ = 1) we might expect the large-time asymptotics to approach this solution. However, if we
seek solutions from the wider class of steady-state solutions which are simply characterized
by constant flux L (not necessarily equal to zero), then we find a family of solutions

xn = 1 − L

n−1∑
k=1

1

kpλ
. (5.10)

From this family, we seek the solution which has the fastest possibly decay as n → ∞. This
occurs for L = 1/ζ(pλ) (where ζ(z) = ∑∞

k=1 k
−z is the Riemann zeta function). Thus

for p � 1/λ, we have that L = 0 and the equilibrium solution determines the large-time
asymptotic behaviour of the system; however, for p > 1/λ there is a steady-state solution
(with L > 0) which has a faster decay at large r; hence the evolution will approach this
solution rather than the equilibrium solution.
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We shall now discuss the manner in which the equilibrium solution xn = 1 is approached
in the case p < 1/λ. The continuum limit for n � 1 is

∂x

∂t
= npλ

(
∂2x

∂n2
+
pλ

n

∂x

∂n

)
(5.11)

which immediately yields a similarity solution with variable η = n/t1/(2−pλ). Assuming
x = f (η) with f (0) = 1 implies

f (η) =
∫∞
η
u−pλ exp(−u2−pλ/(2 − pλ)2) du∫∞

0 u−pλ exp(−u2−pλ/(2 − pλ)2) du
. (5.12)

In this case, there is no travelling diffusive wavefront; rather the balance of coagulation and
fragmentation means that the equilibrium solution is reached by a purely diffusive mechanism.
However, the similarity variable η shows that the aggregation number at a given concentration
increases at a rate n ∝ t1/(2−pλ), which is faster than the usual spreading rate of n ∝ √

t ; this
is due to the size-dependent coefficients accelerating mass transfer in the large-n region. The
precise details of the special case p = 1/λ are not covered by this general solution, but the
special case p = 0 (case II) can be obtained from the general theory for p < 1/λ.

When p > 1/λ the analysis can be modified for the approach to the steady-state solution

xsss
n = 1

ζ(pλ)

∞∑
k=n

1

kpλ
. (5.13)

The manner in which such a solution is approached can be found by writing xn(t) = xsss
n ψn(t).

We are then interested in the manner in which ψn → 1 as t → ∞. This is governed by the
equation

ψ̇n =
(
(n−1)pλ +

L

xsss
n

)
ψn−1 − npλψn − (n− 1)pλψn +

(
npλ − L

xsss
n

)
ψn+1 (5.14)

whereL is the steady-state flux (L = 1/ζ(pλ)). For large n and at large times, it is appropriate
to take the continuum limit, where xsss

n can be approximated by 1/(pλ−1)npλ−1ζ(pλ), yielding

1

npλ

∂ψ

∂t
= ∂2ψ

∂n2
+

(
2 − pλ

n

)
∂ψ

∂n
. (5.15)

This equation possesses a similarity solution of the formψ(r, t) = f (η)where η = r/t1/(2−pλ)

and

f (η) =
∫∞
η
upλ−2 exp(−u2−pλ/(2−pλ)2) du∫∞

0 upλ−2 exp(−u2−pλ/(2−pλ)2) du
. (5.16)

However, this solution is only defined for 1/λ < p < 2/λ and is not valid for the casep = 1/λ.
In the special case p = 2/λ equation (5.15) is solved by

ψ = 1

2
erfc

(
log(n)− t

2
√
t

)
. (5.17)

Although different states are approached in the cases p < 1/λ and p > 1/λ, in both cases the
asymptotics are governed by a similarity solution of the form η = n/t1/(2−pλ).

5.6. Case VI: pure aggregation with rates increasing with cluster size

This case corresponds to pure aggregation, the rate of aggregation growing with cluster size.
There is thus no equilibrium solution; instead the system approaches the steady-state solution
xn = n−pλ according to

ẋn = (n− 1)pλxn−1 − npλxn n � 2. (5.18)
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The substitution ψ(n, t) = npλxn enables progress to be made. From the initial conditions
ψn = 0 for n � 2, the steady-state solution ψn ≡ 1 will be reached as time progresses.
For p > 1/λ the system is ill-posed due to the instantaneous transport of material to large
aggregation numbers.

For p < 1/λ we assume that the equilibrium state is reached by a front moving from
n = 1 to large n as time increases. To find the form of this wave at large times, we take the
large-n and large-t limits, replacing equation (5.18) by

∂ψ

∂t
= npλ

(
1

2

∂2ψ

∂n2
− ∂ψ

∂n

)
. (5.19)

We define the position of the front by n = s(t), and transform to a moving coordinate frame
z = n − s(t). We now show that the two ‘outer’ solutions ψ = 1 valid for z → −∞ (that is
n/s(t) < 1) and ψ = 0 which holds in the limit z → +∞ (that is n/s(t) > 1) can be joined
smoothly by a transition layer. Equation (5.19) implies that ψ(z, t) is determined by

∂ψ

∂t
− ṡ

∂ψ

∂z
= spλ

(
1 +

z

s

)pλ (1

2

∂2ψ

∂z2
− ∂ψ

∂z

)
. (5.20)

The leading-order terms are those involving ∂ψ

∂z
, giving ṡ = spλ, which is solved by

s(t) ∼ [(1−pλ)t]1/(1−pλ) as t → ∞. (5.21)

This result can be verified by considering the density, � = ∑∞
n=1 nxn ∼ ∑s

1 n
1−pλ ∼

(1 − s2−pλ)/(pλ − 2), which implies that the density asymptotically increases according
to �̇ ∼ s1−pλṡ. However, the formula for the density also satisfies �̇ = 1 +

∑∞
n=1 n

pλxn = s.
Thus this calculation also gives ṡ = spλ, confirming equation (5.21).

The first correction terms in (5.20) are

1

spλ

∂ψ

∂t
= 1

2

∂2ψ

∂z2
− pλz

s

∂ψ

∂z
. (5.22)

Since s(t) is monotonically increasing, we simplify further calculations by using s as our
temporal variable. The next stage of the calculation is straightforward if p < 1/2λ, since in
this case z ∼ √

s and (5.22) reduces to ∂ψ

∂s
= 1

2
∂2ψ

∂z2 . Thus we find

xn = 1

2
n−pλerfc

(
(n− s)

√
1 − 2pλ√
2s

)
. (5.23)

For p > 1/2λ, advection of the front dominates the diffusion processes and so the front retains
its memory of the initial conditions. An alternative way of visualizing this process is that the
front moves so fast that it reaches n = ∞ before it has had time to adjust its shape to that of
the erfc function. Thus we cannot specify in detail the shape of the front. More details of the
special case p = 1/2λ can be found in [37].

5.7. Case VII: pure fragmentation with rates decreasing with cluster size

Here there is no aggregation, so fragmentation will cause all clusters to break up, and as in
cases I and IV, the system will approach the state where all matter is in monomeric form
(xn = 0 for n � 2). Since the fragmentation decays rapidly with size, large clusters will take
a very long time to break up. The determining equations are

ẋn = npλxn+1 − (n− 1)pλxn n � 2. (5.24)

Since fragmentation is weaker than in cases I and IV, case VII takes longer to reach equilibrium.
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5.8. Case VIII: aggregation and fragmentation with rates decreasing with cluster size

This corresponds to coagulation and fragmentation being equally balanced, both decaying
as the aggregation number increases. As in cases II and V (with p < 1/λ), the system
approaches the equilibrium solution xn ≡ 1 in the large-time limit. The similarity solution
valid for p < 1/λ derived in case V is valid for this case too. The balance of coagulation
and fragmentation forces means that the equilibrium solution is reached by a predominantly
diffusive process.

5.9. Case IX: pure aggregation with rates decreasing with cluster size

The final case has no fragmentation, only an aggregation term which decays with increasing
particle size. The system thus has no equilibrium solution, and will evolve to the divergent
steady-state solution xn = n−pλ according to

ẋn = (n− 1)pλxn−1 − npλxn n � 2. (5.25)

The substitution ψn = npλxn yields n−pλψ̇n = ψn−1 − ψn, and progress can be made by
forming a continuum approximation

n−pλ ∂ψ
∂t

= 1

2

∂2ψ

∂n2
− ∂ψ

∂n
. (5.26)

As in previous pure aggregation cases, the large-time asymptotic approach to the steady state
is governed by a diffusive wave moving in the n-domain from n = 1 to large n; also as t
increases the wavefront widens. The speed of propagation can be found by considering the
density injected into the system, or by substituting n = s(t) + z into equation (5.26) and
expanding in z. The leading-order terms are

1

s(t)pλ

∂ψ

∂t
= 1

2

∂2ψ

∂z2
+
∂ψ

∂z

(
s(t)−pλṡ(t)− 1 − pλz

s

)
. (5.27)

At leading order the dominant terms are those involving ∂ψ

∂z
, giving ṡ = spλ since we assume

z/s � 1. The position of the front is given by

s(t) � [(1 − pλ)t]1/(1−pλ) as t → ∞ (5.28)

and we now use s as a new timescale to solve the next order terms in (5.27), which yield
ψ = 1

2 erfc(z
√
((1 − 2pλ)/(2s))). Thus

xn(t) ∼ 1

2
n−pλerfc

(
[n− s(t)]

√
1 − 2pλ√

2s(t)

)
as t → ∞ with n− s(t) = O(√t).

(5.29)

From equation (5.28) it is seen that the effect of λ is to reduce the exponent with which the
position of the wavefront scales with time. Equation (5.29) shows that λ increases the decay
exponent of the steady-state solution from p to pλ, and alters the scaling of the width of the
wave. In the fully detailed system of equations the width asymptotes to

√
2s/(1 − 2p), which,

under coarse-graining, one might expect to be mapped to
√

2s/(1 − 2p)/λ; however, solving
the coarse-grained equations yields

√
2s/(1 − 2pλ) instead.

6. Discussion

We have described in detail the nine archetypal classes of behaviour into which the asymptotic
dynamics of the Becker–Döring equations with power law coefficients falls. These nine classes
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(‘cases I–IX’ of section 5) arise as a result of the application of a systematic renormalization
procedure to the fine-grained Becker–Döring equations and capture qualitatively different
physical properties which are shared by all the models within the class, regardless of their
microscopic differences. This amounts to a massive simplification of the original problem. In
this paper, we have concentrated on the detailed large-time asymptotic analysis of these nine
cases.

One specific detailed feature is worthy of note here. Our analysis of cases IV, V and VI
shows that coarse-graining retains the correct leading-order structure of the problem, though
critical exponents of p = 1 where the behaviour changes from fragmentation to aggregation
dominated are mapped to p = 1/λ. Thus if p < 1, to retain the correct qualitative behaviour
one is limited to taking λ < 1/p: taking the limit λ → ∞ causes the correct form of the
kinetics to be lost, although the correct solution is still approached in cases IV and VI. In
case V, the equilibrium solution xn = 1 is approached if λ < 1/p, and a steady-state solution
if p > 1. However, if λ > 1/p > 1, the coarse-grained system approaches a steady-state
solution whereas the microscopic model approaches the equilibrium solution.

In a companion paper [34] we analyse the effect that random perturbations to the rate
coefficients have on the above analysis. There we consider the modifications such perturbations
make to the steady-state solutions, the kinetics of approach to these states and their effects
on the coarse-graining process itself. That analysis is necessary to confirm the existence
and number of distinct universality classes in these Becker–Döring systems; as we have
previously announced, all nine classes of behaviour may indeed be described as such (modulo,
in cases VII–IX, a particular requirement on the behaviour of the noise) [16].

The renormalization programme described here is of direct relevance to many of our
recent publications on the application of generalized Becker–Döring models to a wide range
of problems of physicochemical interest. A further paper currently in preparation [35] explores
several of these nucleation and growth problems in which the renormalization scheme is exact.
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